Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            Large scale collaborative science requires tools to facilitate sharing of data, protocols, analysis tools, as well as data products and their provenance. We describe here two recent science gateways successfully deployed to accomplish collaborative research. The first is the Synergistic Discovery and Design Environment (SD2E), which was a web-based analysis platform for collaborative analysis, data sharing, and application development. The second is the 3D Electron Microscopy (3DEM) portal, which is a web-based research platform focused on developing and disseminating new technologies for enhanced resolution 3DEM. Both gateways were hosted and connected to high-performance computing resources at the Texas Advanced Computing Center.more » « less
- 
            In the last decade, the rise of hosted Software-as-a-Service (SaaS) application programming interfaces (APIs) across both academia and industry has exploded, and simultaneously, microservice architectures have replaced monolithic application platforms for the flexibility and maintainability they offer. These SaaS APIs rely on small, independent and reusable microservices that can be assembled relatively easily into more complex applications. As a result, developers can focus on their own unique functionality and surround it with fully functional, distributed processes developed by other specialists, which they access through APIs. The Tapis framework, a NSF funded project, provides SaaS APIs to allow researchers to achieve faster scientific results, by eliminating the need to set up a complex infrastructure stack. In this paper, we describe the best practices followed to create Tapis APIs using Python and the Stream API as an example implementation illustrating authorization and authentication with the Tapis Security Kernel, Tenants and Tokens APIs, leveraging OpenAPI v3 specification for the API definitions and docker containerization. Finally, we discuss our deployment strategy with Kubernetes, which is an emerging orchestration technology and the early adopter use cases of the Streams API service.more » « less
- 
            Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.more » « less
- 
            Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
